NEW CATIONIC HYDRIDO AND HYDRIDO—DINITROGEN COMPLEXES OF IRON

P GIANNOCCARO, M ROSSI and A SACCO

Istituto di Chimica Generale e Inorganica, Università di Bari, Bari (Italy)

A number of cationic hydrido complexes of transition metals, stabilized by tertiary phosphines, have been described in the last few years. Among the metals of the nickel and of the cobalt group, many very stable derivatives of platinum¹⁻⁶ and iridium⁷⁻¹⁰, but only a few of palladium¹¹, nickel¹², rhodium¹³ and cobalt¹⁴ are known. Among the metals of the iron group, only a series of cationic hydrido complexes of general formula trans-[MH(L)(depe)₂]BPh₄ (M = Fe, Ru, Os, L = CO, p-MeO C_6H_4 NC, N₂, PhCN, depe = Et_2P CH₂ CH₂ PEt₂) has been described¹⁵

We have now prepared a new, very stable cationic hydrido complex of formula $[FeH(dppe)_2] Y (dppe = Ph_2P \cdot CH_2 CH_2 PPh_2, Y = BPh_4, ClO_4)$ This coordinatively unsaturated complex of iron (II) reacts very easily with a number of neutral ligands to give a new series of cationic hydrido complexes of general formula trans- $[FeH(L)(dppe)_2]Y (L = Me_2CO, N_2, CO, NH_3, Py, MeCN, PhCN)$, with H_2 to give the new cationic hydrido complex of iron(IV) $[FeH_3(dppe)_2]Y$, and with CO_2 , CS_2 , O_2 and olefins to give compounds which have not yet been fully characterized

The pentacoordinated cationic hydrido complex of iron(II) has been obtained both by exchange under argon from FeHC1(dppe)₂ (ref 16) according to the reaction

$$FeHCl(dppe) + NaY \xrightarrow{iso-BuOH/THF} FeH(dppe)_2]Y + NaCl$$
 (1)

and by proton addition to FeH(C₆H₄PPh CH₂ CH₂·PPh₂)(dppe)(ref. 17) according to reaction

$$FeH(C_6H_4PPh CH_2 CH_2 PPh_2)(dppe) + HCiO_4 = [FeH(dppe)_2]CiO_4$$
 (2)

The cationic heptacoordinated trihydrido complex of iron(IV) has been obtained both by addition of hydrogen to [FeH(dppe)₂] Y and by addition of perchloric acid to FeH₂(dppe)₂ (ref 16), according to the reversible reaction

$$FeH2(dppe)2 \xrightarrow{HC1O4} [FeH3(dppe)2]C1O4$$
 (3)

The [FeH(dppe)₂] BPh₄ complex is a blue-green crystalline compound, slightly soluble in THF; the color of the solution changes from bright red at temperatures below 0°C to blue at temperatures above 40°C, according to the easily reversible equilibrium

Coord Chem. Rev , 8 (1972)

$$[FeH(THF)(dppe)_2]^+ \rightleftharpoons [FeH(dppe)_2]^+ + THF$$
 (4)

The pentacoordinated cation reacts with molecular nitrogen at room temperature and atmospheric pressure very quickly in solution and slowly in the solid state to give a fairly stable dinitrogen complex, [FeH(N₂)(dppe)₂] BPh₄, which decomposes under nitrogen at about 130°C. The same compound can be obtained in very good yields on bubbling air in a tetrahydrofuran solution of the pentacoordinated hydrido complex. Thus [FeH(dppe)₂] BPh₄ represents another example, better than the previously reported FeH₄(PEtPh₂)₃, of a simple and well characterized substrate able to fix directly atmospheric nitrogen in successful competition with oxygen

The ligand L in the compounds of formula [FeH(L)(dppe)₂] Y can easily be displaced by other ligands, according the following order of stability THF < Me₂CO < N₂ < Py \simeq NH₃ < PhCN \simeq MeCN < CO

In contrast to the corresponding complexes with depets, most of the complexes with dppe show a band of medium intensity in their IR spectrum ascribable to the metal-hydrogen stretching vibration (see Table I)

The IR stretching frequencies of the coordinated ligand L in the two series of compounds, [FeH(L)(dppe)₂] BPh₄ and [FeH(L)(depe)₂] BPh₄ (see Table I), are in

TABLE 1

IR stretelling frequencies

•	Solvent	$ u_{\Gammae-H}$	$ u_{ t L}$	$\nu_{\rm L}$ a
[FeH(dppe) ₂] BPh ₄	Nujo!	1955 (m)		
[TeH(N2)(dppe)2] BPh4	Nujoł	1880 (m)	2130 (s)	2090
[FeH(N2)(dppc)2] BPh4	CH ₂ Cl ₂		2130 (s)	
[FeH(N ₂)(dppe) ₂]CIO ₄	Nujol		2120 (s)	
[FeH(N ₂)(dppc) ₂]ClO ₄	CH ₂ CI ₂		2120 (s)	
[FeH(Me2CO)(dppc)2] BPh4	Nujoi	1890 (m)	1650 (s)	
[FeH(Me2CO)(dppe)2 ClO4	Nujol	(m) 0 e 81	1650 (s)	
[FeH(McCN)(dppe)2 BPh4	Nujoi	1860 (m)	2250 (m)	2228
[FeH(MeCN)(dppe)2]CiO4	Nujoi	1860 (m)	2250 (m)	
[FeH(PhCN)(dppe)2] BPh4	Nujol	1905 (%)	2205 (s)	2168
[TeH(NH3)(dppe)2] BPh4	Nujol	1880 (ms)	3340 (u)	
[FeH(CO)(dppe) ₂] BPh ₄	Nujol		1950 (s)	1915

² Stratching frequencies of the coordinated ligand for the corresponding compounds with depe (ref. 15)

agreement with the increased σ -acceptor and the decreased π -donor properties of the [FeH(dppe)₂] * moiety in comparison with those of the [FeH(depe)₂] * moiety. In particular, the greater strength of the iron—nitrogen bond in the complex with dppe compared with that of the same bond in the complex with depe (as evidenced by the greater stability of the former to chlorinated solvents, to air and to heat) confirms that the strength of the metal—nitrogen bond is more influenced by the σ -acceptor than the

 π -donor properties of the metal. Therefore, the increased strength of the metal-nitrogen bond does not necessarily correlate with an increased relative lowering of the N-N stretching frequency, actually, the relative lowering of the stretching frequency is smaller for the more stable [FeH(N₂)(dppe)₂] BPh₄ ($\Delta\nu/\nu_o = 0.0862$) than for the less stable [FeH(N₂)(depe)₂] BPh₄ species ($\Delta\nu/\nu_o = 0.1033$)

The relatively strong σ -acceptor properties of the cation $[FeH(dppe)_2]^*$ are also indicated by the fact that this substrate, unlike¹⁸ the neutral $FeH_2(PR_3)_3$, is able to coordinate very poor π -acceptor, but good σ -donor ligands, such as, for example, ammonia

ACKNOWLEDGMENT

This research was supported by the Consiglio Nazionale delle Ricerche

REFERENCES

- I J Chatt and J M Davidson, J Chem. Soc., (1964) 2433
- 2 F Cariati, R Ugo and F Bonati, Inorg Chem., 5 (1966) 1128
- 3 F Glockling and K A Hooton, J Chem Soc A, (1968) 826
- 4 M J Church and M J Mays, J Chem. Soc A, (1968) 3074
- 5 M Giustiniani, G Dolcetti and U Belluco, J Chem Soc A, (1969) 2047
- 6 L. Toniolo, M. Giustiniani and U. Belluco, J. Chem. Soc. A. (1969) 2666
- 7 A Sacco, M Rossi and C F Nobile, Chem. Commun., (1966) 589
- 8 M J Church and M J Mays, Chem. Commun. (1968) 435
- 9 M J Church, M J Mays, R N F Simpson and F P Stefanini, J Chem. Soc. A, (1970) 2909
- 10 A J Deeming and B L Shaw, J Chem Soc A, (1970) 3356
- 11 M L H Green and H Munakata, Chem Commun. (1971) 549
- 12 R A Schunn, Inorg Chem , 9 (1970) 394
- 13 R Schrock and J A Osborn, J Amer Chem Soc., 93 (1971) 2397
- 14 A Sacco and R Ugo, J Chem. Soc , (1964) 3274
- 15 G M Bancroft, M J Mays, B E Prater and F P Stefanini, J Chem Soc A, (1970) 2146
- 16 M Aresta, P Grannoccaro, M Rossi and A Sacco, Inorg Chim Acta, 5 (1971) 115
- 17 G Hata, H Kondo and A Mivake, J Amer Chem. Soc., 90 (1968) 2278
- 18 M Aresta, P Giannoccaro, M Rossi and A Sacco, Inorg Chini. Acta, 5 (1971) 203

Coord Chem Rev., 8 (1972)